Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
Expert Systems with Applications ; 221, 2023.
Article in English | Scopus | ID: covidwho-2273738

ABSTRACT

In today's era of data-driven digital society, there is a huge demand for optimized solutions that essentially reduce the cost of operation, thereby aiming to increase productivity. Processing a huge amount of data, like the Microarray based gene expression data, using machine learning and data mining algorithms has certain limitations in terms of memory and time requirements. This would be more concerning, when a dataset comes with redundant and non-important information. For example, many report-based medical datasets have several non-informative attributes which mislead the classification algorithms. To this end, researchers have been developing several feature selection algorithms that try to discard the redundant information from the raw datasets before feeding them to machine learning algorithms. Metaheuristic based optimization algorithms provide an excellent option to solve feature selection problems. In this paper, we propose a music-inspired harmony search (HS) algorithm based wrapper feature selection method. At the beginning, we use a chaotic mapping to initialize the population of the HS algorithm in order to better coverage of the search space. Further to complement the inferior exploitation of the HS algorithm, we integrate it with the Late Acceptance Hill Climbing (LAHC) method. Thus the combination of these two algorithms provides a good balance between the exploration and exploitation of the HS algorithm. We evaluate the proposed feature selection method on 15 UCI datasets and the obtained results are found to be better than many state-of-the-art methods both in terms of the classification accuracy and the number of features selected. To evaluate the effectiveness of our algorithm, we utilize a combination of precision, recall, F1 score, fitness value, and execution time as performance indicators. These metrics enable us to obtain a comprehensive assessment of the algorithm's abilities and limitations. We also apply our method on 3 microarray based gene expression datasets used for prediction of cancer to ensure the scalability and robustness as a feature selection method in real-life scenarios. In addition to this, we test our approach using the COVID-19 dataset, and it performs better than several metaheuristic based optimization techniques. © 2023

2.
Precision Medicine ; 190:1-37, 2022.
Article in English | Web of Science | ID: covidwho-2157152

ABSTRACT

Achieving predictive, precise, participatory, preventive, and personalized health (abbreviated as p-Health) requires comprehensive evaluations of an individual's conditions captured by various measurement technologies. Since the 1950s, analysis of care providers' and physicians' notes and measurement data by computers to improve healthcare delivery has been termed clinical informatics. Since the 2010s, wide adoptions of Electronic Health Records (EHRs) have greatly improved clinical informatics development with fast growing pervasive wearable technologies that continuously capture the human physiological profile in-clinic (EHRs) and out-of-clinic (PHRs or Personal Health Records) to bolster mobile health (mHealth). In addition, after the Human Genome Project in the 1990s, medical genomics has emerged to capture the high-throughput molecular profile of a person. As a result, integrated data analytics is becoming one of the fast-growing areas under Biomedical Big Data to improve human healthcare outcomes. In this chapter, we first introduce the scope of data integration and review applications, data sources, and tools for clinical informatics and medical genomics. We then describe the data integration analytics at the raw data level, feature level, and decision level with case studies, and the opportunity for research and translation using advanced artificial intelligence (AI), such as deep learning. Lastly, we summarize the opportunities in biomedical big data integration that can reshape healthcare toward p-health.

3.
Gene Rep ; 22: 100980, 2021 Mar.
Article in English | MEDLINE | ID: covidwho-953497

ABSTRACT

The current outbreak of coronavirus disease (COVID-19) has been affecting millions of people and has caused devastating mortality worldwide. Moreover, it is to be noted that cytokine storm has become an important cause for the rising mortality. However, the efforts for the development of drugs, vaccines and treatment has also been intervened due to poor understanding of host's defense mechanism and also due to the development of cytokine storm against this viral infection. Thus, a deeper understanding of the mechanism behind the immune dysregulation and cytokine storm development might give us clues for the clinical management of the severe cases. Hence, we have implemented differential gene expression analysis together with protein-protein interaction and Gene Ontology (GO) studies with the help of Severe Acute respiratory syndrome coronavirus (SARS-CoV) data sets such as GSE1739 and GSE33267 to give us more knowledge on the host immune response for the pathogenic coronavirus which in turn reduces the mortality. A total of 79 differentially-expressed genes (DEGs) were identified in our data set using the filters such as P-value and log2 fold change values of less than 0.05 and 1.5 respectively. Further, network analysis and GO studies showed that differential expression of two hub genes namely ELANE and LTF which could induce higher levels of pro-inflammatory cytokines in the lungs. We are certain that differential expression of ELANE and LTF results in an excessive inflammatory reaction known as the cytokine storm and ultimately leading to death. Therefore, targeting these key drivers of cytokine storm genes appears to be the potential therapeutic targets for combating the Severe Acute respiratory syndrome coronavirus - 2 (SARS-CoV-2) infection ultimately resulting in reduced mortality. Indeed, this predictive view may open new insights for designing an immune intervention for COVID-19 in the near future resulting in the mitigation of mortality rate.

SELECTION OF CITATIONS
SEARCH DETAIL